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Abstract.
Background: Mild cognitive impairment (MCI) is a heterogeneous condition that can precede various forms of dementia,
including Alzheimer’s disease (AD). Identifying MCI subjects who are at high risk of progressing to AD is of major clinical
relevance. Enlarged perivascular spaces (EPVS) on MRI are linked to cognitive decline, but their predictive value for MCI
to AD progression is unclear.
Objective: This study aims to assess the predictive value of EPVS for MCI to AD progression and develop a predictive
model combining EPVS grading with clinical and laboratory data to estimate conversion risk.
Methods: We analyzed 358 patients with MCI from the ADNI database, consisting of 177 MCI-AD converters and 181
non-converters. The data collected included demographic information, imaging data (including perivascular spaces grade),
clinical assessments, and laboratory test results. Variable selection was conducted using the Least Absolute Shrinkage and
Selection Operator (LASSO) method, followed by logistic regression to develop predictive model.
Results: In the univariate logistic regression analysis, both moderate (OR = 5.54, 95% CI [3.04–10.18]) and severe
(OR = 25.04, 95% CI [10.07–62.23]) enlargements of the centrum semiovale perivascular space (CSO-PVS) were found
to be strong predictors of disease progression. LASSO analyses yielded 12 variables, refined to six in the final model: APOE4
genotype, ADAS11 score, CSO-PVS grade, and volumes of entorhinal, fusiform, and midtemporal regions, with an AUC of
0.956 in the training and 0.912 in the validation cohort.
Conclusions: Our predictive model, emphasizing EPVS assessment, provides clinicians with a practical tool for early
detection and management of AD risk in MCI patients.
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INTRODUCTION

Alzheimer’s disease (AD) is a complex neurode-
generative disorder that poses a significant healthcare
challenge globally.1 It is considered one of the most
significant forms of dementia, affecting a cumulative
total of 40 million individuals worldwide. This dis-
ease imposes significant suffering and burden on both
patients and their families. Moreover, as the popula-
tion ages, the number of individuals affected by AD
continues to increase.2 Mild cognitive impairment
(MCI)is characterized by cognitive dysfunction in an
individual beyond what is expected given their age or
education. MCI is a heterogeneous condition that can
manifest as cognitive impairment preceding various
dementias. While MCI is not solely a precursor to
AD, it is important to note that a significant propor-
tion of individuals with MCI may progress to AD.
Additionally, many individuals diagnosed with AD
initially present with symptoms of MCI.3 Therefore,
it is important to identify individuals within the MCI
cohort who are at a heightened risk of progression,
enabling early detection and intervention.

Currently, established biomarkers like biochem-
ical alterations in cerebrospinal fluid (CSF) and
neuroimaging assessments of brain structure and
function are validated as dependable indicators for
AD.4−6 These include elevated amyloid-� (A�) and
tau protein levels in CSF, shrinkage of the hip-
pocampus, and decreased activity in the posterior
cingulate cortex. Machine learning algorithms that
amalgamate these biomarkers have proven to enable
highly accurate, automated diagnosis and prognosis
in AD patients.7,8 Nevertheless, due to variations in
treatment standards and equipment across different
regions, obtaining these biomarkers, such as PET-CT,
is more challenging. Therefore, there is a need to dis-
cover biomarkers that are more accessible to clinical
or community settings.

The perivascular space (PVS) acts as a conduit
between neurovascular units and larger blood vessels,
situated at the interface of small blood vessels and
neurons, serving as a pathway for clearing metabo-
lites, such as A�.9 Normally, the perivascular space
is not visible on magnetic resonance imaging (MRI).
However, when there is increased CSF retention in
the perivascular space due to various reasons such
as degeneration or inflammation, the PVS expands
and becomes visible on MRI.10,11 Although previous
studies generally concluded that enlarged perivascu-
lar space (EPVS) is not of significant importance,
recent evidence suggests that the extent of EPVS

visible on MRI can serve as an imaging marker
for dysfunction in metabolite clearance.12,13 An
increased load of centrum semiovale perivascular
space (CSO-PVS) has been associated with a higher
risk of dementia, regardless of vascular risk factors,
white matter hyperintensity, and recent small subcor-
tical infarct.14,15 This finding underscores the role
of PVS as a subclinical MRI marker. Consequently,
we attempted to explore the correlation between the
severity of enlarged perivascular spaces in patients
with MCI and the progression to MCI-AD through
group analysis of different outcomes. Furthermore,
we integrated EPVS load with clinical cognitive
scales, biochemical markers, and other imaging fea-
tures to devise a novel prediction model for assessing
the risk of MCI-AD progression. This model aims
to facilitate more convenient and accurate clinical
screening of high-risk populations transitioning into
dementia.

MATERIALS AND METHODS

ADNI study design

All study participants were drawn from the
Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database, including ADNI-1, ADNI-GO,
ADNI-2, and ADNI-3 (https://adni.loni.usc.edu).
Launched in 2003 as a collaborative effort between
public and private sectors, ADNI aims to assess
the feasibility of integrating serial MRI, positron
emission tomography, biomarkers, clinical evalua-
tions, and neuropsychological tests to measure the
progression of MCI and early-stage AD. For the
latest updates, refer to https://www.adni-info.org.
Institutional review boards at all participating
institutions granted approval for ADNI, and written
informed consent was obtained from all participants
at each site.

Participants

This study’s cohort was selected from the vast
array of demographic and clinical profiles available
within the ADNI database. Our focused analysis
included patients who were clinically diagnosed with
MCI at baseline. These individuals underwent a
comprehensive battery of assessments at the outset,
encompassing MRI, blood tests, CSF analysis, and
clinical evaluations, followed by periodic reviews
extending from 3 to 36 months.
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In the diagnostic criteria of the ADNI database,
MCI is diagnosed based on memory complaints veri-
fied by a study partner, abnormal memory function
documented by scoring below education-adjusted
cutoffs on the Logical Memory II subscale, a Mini-
Mental State Exam (MMSE) score between 24 and
30, Clinical Dementia Rating (CDR) of 0.5, and pre-
served general cognition and functional performance.
AD diagnosis includes memory complaints, abnor-
mal memory function, MMSE score between 20 and
26, CDR of 0.5 or 1.0, and meeting National Insti-
tute of Neurological and Communicative Disorders
and Stroke, as well as the Alzheimer’s Disease and
Related Disorders Association (NINCDS/ADRDA)
criteria for probable AD.

In our initial selection, we identified 400 individ-
uals with MCI. Upon closer scrutiny, we excluded
those with incomplete datasets or anomalies in image
processing. This filtration yielded a refined sample of
358 subjects. Of these, 181 maintained their MCI sta-
tus without progressing to AD (MCI-nonconverted,
MCI-NC), while 177 experienced a progression to
AD (MCI-converted, MCI-C) within the follow-up
period. The AD diagnosis was anchored to the criteria
established by the NINCDS/ADRDA.

For the purposes of analytical rigor, the remain-
ing MCI participants were stratified into two distinct
groups: a training cohort and a validation cohort,
following an 85 : 15 split (comprising 303 and 54
patients). The schematic of our study’s design, encap-
sulating the selection and division process, is depicted
in Fig. 1.

Patient information

Clinical data and laboratory test results were
retrieved from the ADNI website. Demographic
information encompassed age, sex, and medical
history regarding hypertension, diabetes, hyperlipi-
demia, and hypercholesterolemia. Baseline cognitive
function was assessed using four neuropsycholog-
ical scales: the Alzheimer’s Disease Assessment
Scale (ADAS) 13 and 11 Cognitive Subscale,
the CDR, and the MMSE. Laboratory features
included CSF levels of A�, phosphorylated tau
protein (p-tau), total tau protein (t-tau), and the
presence of the APOE �4 genotype. Measurements
of CSF A�1–42 and tau levels were performed
with the Elecsys® �-amyloid (1–42) CSF and the
Elecsys® Tau CSF immunoassays on a cobas e 601
instrument.16 APOE4 genotypes were obtained from
DNA extracted from blood.17 The data is also avail-

able in the ‘UPENNBIOMK9.csv’ file in the ADNI
database. The volumes of the hippocampus, entorhi-
nal cortex (Entorhinal), fusiform gyrus (Fusiform),
middle temporal lobe (MidTemp), whole brain, and
intracranial volume (ICV) were obtained from the
ADNIMERGE dataset, a part of the ADNI database.
The MRI images were processed at the Center for
Imaging of Neurodegenerative Diseases at UCSF,
cortical reconstruction and volumetric segmentation
is performed with the FreeSurfer image analysis suite.
The specific image processing procedures have been
detailed in previous studies.18,19 and can also be
found in the ADNI methods section accessible at
http://adni.loni.usc.edu/. A comprehensive summary
of clinical variables and laboratory features is pro-
vided in Table 1.

PVS ratings

All patients underwent head MRI at either 1.5T or
3.0T, as part of the imaging protocol established by
the ADNI.20 The visual rating of enlarged perivas-
cular spaces was performed by two neurologists,
Chen Jun and Yang Jingwen, following the Edinburgh
group regarding EPVS rating guidelines.21 EPVS
larger than 1 mm in diameter in the centrum semio-
vale (CSO) and basal ganglia (BG) were visually
evaluated using MPRAGE and FLAIR images.The
assessment of EPVS in CSO and BG was focused on
the slices with the highest number of EPVS, graded
based on the following scores: level 0 denoted no
EPVS, level 1 indicated 1 to 10 EPVS, level 2 indi-
cated 11 to 20 EPVS, level 3 indicated 21 to 40
EPVS, and level 4 indicated more than 40 EPVS, in
accordance with established protocols.To aid statis-
tical analysis, the EPVS data were categorized using
various grading methods. For EPVS in CSO and BG,
categories 0 and 1 were combined and labeled as
no/mild (score = 1), category 2 was labeled as mod-
erate severity (score = 2), and levels 3 and 4 were
labeled as severe (score = 3).

Data analysis and model building

Continuous variables were summarized using
median values, while categorical variables were
described using proportions. Comparisons between
MCI-C and MCI-NC were made using appropriate
statistical tests tailored to the data type: Wilcoxon
rank-sum test or t-test for continuous data, and
Fisher’s exact test or Pearson’s Chi-square test for
categorical data. To assess the predictive value of fac-
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Fig. 1. MCI, mild cognitive impairment; ADNI, Alzheimer’s Disease Neuroimaging Initiative; ROC, receiver operating characteristic curve;
DCA, decision curve analysis.

tors such as the grade of EPVS on the progression
from MCI to AD, we first conducted a correlation
analysis and univariate logistic regression analysis
on the baseline data. Subsequently, we divided all
data into a training set (85%, n = 303) and a val-
idation set (15%, n = 54) for model building and

internal validation. Variable selection was performed
using the Least Absolute Shrinkage and Selection
Operator (LASSO) regression model to enhance the
accuracy of the predictive model. Non-zero variables
from the LASSO regression results were included in
single-factor and multiple-factor logistic regression
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Table 1
Characteristics of patients in the MCI-C and MCI-NC group

Variable MCI-C (n = 176) MCI-NC (n = 181) t/χ2 p

Age (y)a 74.85 (6.88) 72.44 (8.00) 3.076 0.002
Sex (female) (%) 68 (38.6) 75 (41.4) –0.539 0.590
APOE4 (%) 5.285 <0.001

0 57 (32.4) 107 (59.1)
1 92 (52.3) 64 (35.4)
2 27 (15.3) 10 (5.5)

Hypertension (%) 77 (43.8) 81 (44.8) –0.190 0.849
Diabetes (%) 15 (8.5) 16 (8.8) –0.106 0.915
Hyperlipidemia (%) 22 (12.5) 32 (17.7) –1.364 0.173
Hypercholesteremia (%) 15 (8.5) 25 (13.8) –1.582 0.114
A�, pg/mLa 705.52 (338.84) 1094.40 (463.59) –8.115 <0.001
Tau, pg/mLa 332.58 (123.10) 264.22 (116.11) 6.034 <0.001
p-tau, pg/mLa 32.39 (13.74) 24.60 (12.94) 6.449 <0.001
CDRSB, scorea 1.85 (0.96) 1.25 (0.67) 6.409 <0.001
ADAS11, scorea 13.16 (4.04) 7.99 (3.20) 11.214 <0.001
ADAS13, scorea 21.32 (5.37) 13.03 (5.27) 11.857 <0.001
ADASQ4, scorea 7.13 (1.95) 4.31 (2.23) 10.635 <0.001
MMSE, scorea 26.61 (1.70) 28.18 (1.52) –8.273 <0.001
CSOPVS (%) 9.190 <0.001

1 61 (34.7) 146 (80.7)
2 57 (32.4) 28 (15.5)
3 58 (33.0) 7 (3.9)

BGPVS (%) 6.067 <0.001
1 113 (64.2) 165 (91.2)
2 45 (25.6) 11 (6.1)
3 18 (10.2) 5 (2.8)

Ventricles, mm3 a 47446.07 (23149.80) 37212.78 (21741.08) 4.857 <0.001
Hippocampus, mm3 a 6047.02 (1020.37) 7127.90 (1066.04) –9.058 <0.001
WholeBrain, mm3 a 982892.59 (113286.19) 1065447.94 (110709.66) –6.602 <0.001
Entorhinal, mm3 a 3011.50 (719.00) 3735.17 (694.93) –8.790 <0.001
Fusiform, mm3 a 15793.77 (2432.75) 18419.69 (2547.35) –8.824 <0.001
MidTemp, mm3 a 17478.49 (2957.18) 20841.15 (2547.73) –10.295 <0.001
ICV, mm3 a 1572420.23 (173888.38) 1540804.31 (157733.55) 1.704 <0.001

AGE, Baseline age; APOE4, the numbers of Apolipoprotein �4 allele; Hypertension, history of hypertension; Diabetes,
history of diabetes; Hyperlipidemia, history of hyperlipidemia; Hypercholesteremia, history of hypercholesteremia;
A�, amyloid-� 1–42 content in cerebrospinal fluid; Tau, tau protein content in cerebrospinal fluid; p-tau, phosphorylated
tau protein content in cerebrospinal fluid; CDRSB, Clinical Dementia Rating Score; ADAS11, Alzheimer’s disease
assessment scale-cognitive score 11 items; ADAS13, Alzheimer’s disease assessment scale-cognitive score 13 items;
ADASQ4, Alzheimer’s disease assessment scale-cognitive score delayed word recall; MMSE, Mini-Mental State
Examination; CSOPVS, rating of centrum semiovale perivascular space; BGPVS, rating of basal ganglia perivascular
space; Ventricles, ventricle volume; Hippocampus, hippocampus volume; WholeBrain, wholebrain volume; Entorhinal,
entorhinal cortex volume; Fusiform, fusiform gyrus volume; MidTemp, middle temporal volume; ICV, intracranial
volume. a(mean (SD)).

for further screening and construction of a multivari-
ate logistic regression model to predict the risk of
MCI progression to AD, with the results visualised
as a Nomogram.

Diagnostic accuracy, calibration performance, and
net benefits served as the key assessment criteria in
this study. These parameters were assessed through
ROC curve analysis, calibration curve analysis, and
decision curve analysis (DCA), respectively. The
ROC curve can evaluate the model’s discriminative
ability. The closer the ROC curve is to the upper
left corner, the larger the AUC value, indicating
a better performance of the model in distinguish-

ing between positive and negative cases. Generally,
AUC ≥ 0.7 indicates satisfactory performance. Fur-
thermore, using the calibration curve to assess the
accuracy of the model’s predicted probabilities, a
closer match between the calibration curve and the
actual probability curve indicates a better fit of
the model in probability prediction. Lastly, decision
curve analysis evaluates the utility of the model in
different clinical scenarios by calculating the ben-
efits and losses of patients at different thresholds,
providing a comprehensive assessment of whether
the model has practical clinical value.Furthermore, to
evaluate the enhancement of models by EPVS levels,
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we constructed multiple models and compared their
performance using ROC curves and AUC values. Sta-
tistical analyses were executed using R software, with
p-values below 0.05 deemed statistically significant.

RESULTS

Description of statistical results

Table 1 demonstrates the demographic character-
istics and statistical results of the two groups of
MCI-C and MCI-NC. The study encompassed 358
participants ranging in age from 65 to 80 years. The
average age within the MCI-C group was 72.44 years
(SD = 8), while the MCI-NC group had an average
age of 74.85 years (SD = 6.88). As expected, the
number and percentage of individuals with moderate
(CSO-PVS = 2, 57 32.4%) and severe (CSO-PVS = 3,
58 33.0%) CSO-PVS grades were notably higher in
the MCI-C group compared to the MCI-NC group
with moderate (CSO-PVS = 2, 28 15.5%) and severe
(CSO-PVS = 3, 7 3.9%) grades, and these findings
were statistically significant (p < 0.001). Compara-
tive analysis showed no significant differences in
sex distribution or the prevalence of hypertension,
diabetes, hyperlipidemia, or hypercholesterolemia
between the MCI converters and non-converters in
both cohorts (p > 0.05). The Mann-Whitney U test
showed significantly higher counts of APOE4 geno-
type, tau and p-tau levels in CSF, perivascular spaces
grade in the centrum semiovale and basal ganglia,
CDR-SB score, ADAS13, ADAS11, and ADASQ4
scores in the MCI-C group compared to the MCI-
NC group (p < 0.001).Conversely, the MCI-C group
showed significantly lower levels of A� in CSF,
MMSE score, and volumes of the hippocampus,
fusiform gyrus, entorhinal cortex, middle temporal,
and wholebrain (p < 0.001).

Univariate logistic regression of baseline data

Univariate logistic regression analysis was con-
ducted on variables with statistical significance
(p < 0.05) from the baseline data to explore the
association between PVS enlargement and the pro-
gression from MCI to AD. The results revealed a
significant correlation between the degree of PVS
enlargement in the centrum semiovale (CSO-PVS)
and basal ganglia (BG-PVS) with the risk of disease
advancement. Specifically, moderate enlargement of
CSO-PVS (CSO-PVS = 2) displayed a substantial
odds ratio (OR) of 5.54 (95% CI [3.04–10.18]),

indicating a five-fold increase in the likelihood of
progression. Furthermore, severe enlargement of
CSO-PVS (CSO-PVS = 3) exhibited a notably high
OR of 25.04 (95% CI [10.07–62.23]), emphasizing
its strong predictive value for disease progression.
Similarly, moderate enlargement of BG-PVS (BG-
PVS = 2) demonstrated a significant OR of 9.26 (95%
CI [3.97–21.6]), while severe enlargement of BG-
PVS (BG-PVS = 3) had an OR of 4.98 (95% CI
[1.75–14.20]), highlighting their predictive signifi-
cance (Table 2).

Furthermore, age, APOE4 genotype, CSF concen-
trations of A�, tau, and p-tau, scores from cognitive
assessments including CDRSB, ADAS11, ADAS13,
ADASQ4, MMSE, and volumetric measures of the
hippocampus, fusiform gyrus, entorhinal cortex, and
middle temporal gyrus all exhibited significant asso-
ciations with the transition from MCI to AD. These
variables served as independent predictors in the
regression model. Nevertheless, the primary limita-
tion of this approach is its inability to address poten-
tial interactions and collinearity among the variables.

Clinical feature selection

To construct and assess the accuracy of a predic-
tive model for MCI-AD progression risk, 358 patients
were randomly assigned to a training set (n = 303) and
a validation set (n = 54), with an 85 : 15 split. 24 items
clinical characteristics identified through univariate
logistic regression were included in a subsequent
LASSO regression analysis. This process identi-
fied 12 variables with non-zero coefficients (Fig. 2),
encompassing the APOE4 genotype, CSF A� con-
tent, CDRSB, ADAS11, ADASQ4, MMSE scale, and
volumes of the fusiform gyrus (Fusiform), entorhi-
nal cortex (Entorhinal), middle temporal (MidTemp)
and intracranial volume (ICV) area, along with the
perivascular space grade (CSO, BG). Incorporate
these 12 variables into a multiple logistic regression,
assessing their P-values, collinearity, and OR values
to derive the final predictive model consisting of six
variables: APOE4 genotype, ADAS11 scale, CSO-
PVS grade, and the volumes of Entorhinal, Fusiform,
and MidTemp (Table 3).

Estimation of the predictive model

Utilizing stepwise logistic regression analysis, we
identified APOE4 genotype, ADAS11 scale, CSO-
PVS grade, and the volumes of Entorhinal, Fusiform,
and MidTemp as independent predictors for the con-
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Table 2
Results of univariate logistic regression analysis of baseline data

Predictors Univariate logistic regression analysis
� OR 95% CI p

AGE 0.0425 1.59 1.14–2.22 0.0065
APOE4 = 1 1.0612 2.89 1.76–4.75 <0.0001
APOE4 = 2 1.6843 5.39 2.31–12.57 <0.0001
A� –0.0023 0.20 0.13–0.32 <0.0001
Tau 0.0049 1.96 1.47–2.61 <0.0001
p-tau 0.0444 2.00 1.48–2.70 <0.0001
CDRSB 0.91 2.48 1.81–3.40 <0.0001
ADAS11 0.4131 15.73 8.37–29.58 <0.0001
ADAS13 0.2910 18.36 9.56–35.25 <0.0001
ADASQ4 0.5844 7.73 4.77–12.53 <0.0001
MMSE –0.6024 0.16 0.10–0.27 <0.0001
CSOPVS = 2 1.71 5.54 3.04–10.08 <0.001
CSOPVS = 3 3.22 25.04 10.07–62.23 <0.001
BGPVS = 2 2.2262 9.26 3.97–21.60 <0.001
BGPVS = 3 1.6072 4.98 1.75–14.20 0.0026
Ventricles 0.000019 1.77 1.31–2.42 0.0003
Hippocampus –0.0009 0.23 0.15–0.34 <0.001
Entorhinal –0.0015 0.18 0.12–0.29 <0.0001
Fusiform –0.0004 0.20 0.13–0.31 <0.0001
MidTemp –0.0004 0.16 0.10–0.25 <0.0001

OR, odds ratio; CI, confidence interval; APOE4, the numbers of Apolipoprotein �4 allele; A�, amyloid-�
1–42 content in cerebrospinal fluid; Tau, tau protein content in cerebrospinal fluid; p-tau, phosphory-
lated tau protein content in cerebrospinal fluid; CDRSB, Clinical Dementia Rating Score; ADAS11,
Alzheimer’s disease assessment scale-cognitive score 11 items; ADAS13, Alzheimer’s disease assess-
ment scale-cognitive score 13 items; ADASQ4, Alzheimer’s disease assessment scale-cognitive score
delayed word recall; MMSE, Mini-Mental State Examination; CSOPVS, rating of centrum semiovale
perivascular space; BGPVS, rating of basal ganglia perivascular space; Ventricles, ventricle volume;
Hippocampus, hippocampus volume; Entorhinal, entorhinal cortex volume; Fusiform, fusiform gyrus
volume; MidTemp, middle temporal volume.

Fig. 2. Predictor selection was conducted using LASSO regression analysis with tenfold cross-validation. A coefficient profile plot was
generated against the log (lambda) sequence to visualize the tuning parameter selection of deviance in the LASSO regression. In this study,
predictor selection was based on the 1-SE criteria, resulting in the selection of 11 non-zero coefficients. LASSO stands for least absolute
shrinkage and selection operator, and SE refers to standard error.

version of MCI to AD. The variance inflation factor
(VIF) values of these predictors were all below
5, indicating the absence of significant collinearity
among them (refer to Table 3). These six variables,
including APOE4 genotype, ADAS11 scale, CSO-
PVS grade, and the volumes of Entorhinal, Fusiform,

and MidTemp, collectively formed the final pre-
dictive model. Subsequent validation of this model
through ROC curve analysis revealed an impressive
AUC of 0.956 (95% CI, 0.936–0.976) for the training
dataset and 0.912 (95% CI, 0.839–0.985) for the vali-
dation set (see Fig. 3). To enhance the interpretability
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Table 3
Final model for MCI-AD progression risk: Results of multivariate logistic regression variable analysis

Predictors Final Model
� OR 95% CI p VIF value

APOE4 = 1 0.92 2.51 1.08–5.84 0.0326 1.125
APOE4 = 2 1.99 7.30 1.81–29.47 0.0053 1.185
ADAS11 0.37 11.69 4.81–28.41 <0.0001 1.071
CSOPVS = 2 2.24 9.40 3.23–27.34 <0.0001 1.372
CSOPVS = 3 3.20 24.64 7.66–79.29 <0.0001 1.186
Entorhinal –0.0007 0.43 0.21–0.86 0.0179 1.148
Fusiform –0.0003 0.31 0.14–0.68 0.0035 1.564
MidTemp –0.0003 0.34 0.17–0.66 0.0015 1.252

OR, odds ratio; CI, confidence interval; VIF, variance inflation factor; APOE4, the numbers of Apolipopro-
tein �4 allele; ADAS11, Alzheimer’s disease assessment scale-cognitive score 11 items; CSOPVS, rating
of centrum semiovale perivascular space; Entorhinal, entorhinal cortex volume; Fusiform, fusiform gyrus
volume; MidTemp, middle temporal volume.

Fig. 3. The AUC represents the discriminatory ability of the model and was assessed for both the predictive model and internal validation.
Panel A displays the AUC of the predictive model, while panel B exhibits the AUC of the internal validation using a validation set of n = 54.
The dotted vertical lines indicate the 95% confidence interval. AUC stands for area under the curve.

of the predictive model, a nomogram was developed
(depicted in Fig. 4), offering a practical clinical tool
for estimating the probability of MCI patients pro-
gressing to AD.

Performance evaluation of the integrated model

In order to evaluate the significance of the CSO-
PVS grade within predictive models and compare
it with existing known biomarker models, we con-
structed a Basic model (excluding CSO-PVS while
keeping other factors constant) for comparison, and
subjected both models as well as single-factor com-
ponents of the model to ROC curve analysis (Fig. 5).
The results showed that in the training cohort, the
model incorporating CSO-PVS (referred to as the
PVS Model) exhibited the highest predictive accu-
racy of 0.96 (0.94–0.98), while the Basic model
achieved 0.93 (0.90–0.95). This superior perfor-

mance was also evident in the validation cohort
with the PVS Model showing accuracy of 0.91
(0.84–0.99) compared to the Basic model’s accuracy
of 0.86 (0.77–0.96), indicating a significant improve-
ment in model efficacy.The sensitivity (0.916) and
specificity (0.80) of the PVS model are both supe-
rior to the base model. In the validation set, the
sensitivity (0.848) and specificity (0.857) also indi-
cate that the comprehensive predictive model with
CSO-PVS has better discriminatory ability (Table 4).
As a standalone biomarker, CSO-PVS also demon-
strated good performance with an accuracy of 0.77
(0.72–0.82) in the validation set. Other independent
risk factors including APOE4, ADAS11, Entorhi-
nal cortex, Fusiform gyrus, and Middle Temporal
volumes showed high accuracy, with corresponding
values in the training cohort of 0.66 (0.60–0.71),
0.85 (0.81–0.89), 0.78 (0.73–0.83), 0.77 (0.72–0.82),
and 0.82 (0.77–0.87), respectively. In the validation
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Fig. 4. The nomogram for predicting MCI-AD risk and its algorithm involves assigning points for each variable of an MCI patient on the
uppermost rule. The scores are then summed to obtain the total number of points, and the corresponding predicted probability of progression
to Alzheimer’s disease is determined on the lowest rule.

Fig. 5. ROC curves for the integrated model, Basic model and independent predictors in the model for the prediction of progression from MCI
to AD in the training (a) and test (b) sets. PVS Model: Integrated predictive model (includes CSO-PVS grade). Basic Model: Comparative
Model (excludes CSO-PVS grade while keeping the remaining factors unchanged). APOE4, the numbers of Apolipoprotein �4; ADAS11,
Alzheimer’s disease assessment scale-cognitive score 11 items; CSOPVS, rating of centrum semiovale perivascular space; Entorhinal,
entorhinal cortex volume; Fusiform, Fusiform gyrus volume; MidTemp, middle temporal volume.
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Table 4
Comparison of predictive model performance

Predictors Train Test
AUC Sensitivity Specificity AUC Sensitivity Specificity

PVS model 0.956 0.916 0.80 0.912 0.848 0.857
Basic model 0.926 0.860 0.769 0.862 0.788 0.809

PVS model, integrated model with CSO-PVS; Basic model, Remove only the base model of CSO-PVS; AUC, area
under the curve.

Fig. 6. DCA curves for the associativeintegrated model, Basic model and independent predictors in the model in the training (A) and test
(B) sets. PVS Model: Integrated predictive model (includes CSO-PVS grade). Basic Model: Comparative Model (excludes CSO-PVS grade
while keeping the remaining factors unchanged). APOE4, the numbers of Apolipoprotein �4; ADAS11, Alzheimer’s disease assessment
scale-cognitive score 11 items; CSOPVS, rating of centrum semiovale perivascular space; Entorhinal, entorhinal cortex volume; Fusiform,
Fusiform gyrus volume; MidTemp, middle temporal volume.

Fig. 7. A) Training set; B) Test set. The calibration curve of the predictive model illustrates the degree of consistency between the predicted
probability and observed probability. The Hosmer–Lemeshow test, with a p-value greater than 0.05, suggests that the model exhibits
goodness-of-fit.

cohort, the accuracies were 0.59 (0.45–0.73), 0.83
(0.70–0.95), 0.69 (0.54–0.83), 0.76 (0.63–0.89), and
0.83 (0.71–0.94) for APOE4, ADAS11, Entorhinal
cortex, Fusiform gyrus, and Middle Temporal vol-
umes, respectively. To further validate the model’s
value, we conducted DCA curve analysis on the
PVS model, Basic model, APOE4, CSO-PVS grade,

ADAS11 scale, and the integrated brain region vol-
umes (Entorhinal+Fusiform+MidTemp) (Fig. 6). The
DCA curve analysis revealed that the integrated pre-
dictive model incorporating CSO-PVS yielded the
highest net benefit.The calibration curve (Fig. 7)
demonstrates that the proposed model is well cali-
brated.
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DISCUSSION

At present, no effective pharmacological inter-
ventions exist to arrest the progression of AD,
emphasizing the importance of preventive measures
and the postponement of its diagnosis and treatment.
Therefore, the precise prediction of MCI patients’
risk of developing AD, the identification of high-risk
individuals, and the initiation of early interventions
are challenging but essential goals. This research
presents the perivascular space as a novel biomarker
and constructs a predictive nomogram for assessing
the risk of progression from MCI to AD. The nomo-
gram aids clinicians in rapidly identifying patients
at high risk, enabling early intervention and reduc-
ing the impact on patients and their families. The
model incorporates seven variables: sex, APOE �4
allele status, ADAS-Cog11 score, CSO-PVS grade,
and volumes of the entorhinal cortex, fusiform gyrus,
and mid-temporal region. It exhibits superior discrim-
inative capacity, calibration, and clinical utility.

Prior research has demonstrated the significance
of the perivascular space as a crucial pathway for
metabolite elimination. Dysfunction in the brain’s
lymphatic system due to degeneration or natural
aging leads to the accumulation of large molecules,
such as A�, in the perivascular space, result-
ing in irreversible expansion that is observable
through imaging.9 Therefore, perivascular space
expansion may serve as an imaging biomarker
for the impairment of brain metabolism clear-
ance pathways. Numerous studies have substantiated
that enlargement of the perivascular spaces in the
centrum semiovale can independently prognosti-
cate dementia.15,22 A study revealed that 40.9%
of AD-related pathological participants had severe
CSO-PVS, while the proportion for subcortical vas-
cular cognitive impairment participants was 14.7%.
In the same study, 0.91% of AD-related pathologi-
cal participants exhibited severe BG-PVS, compared
to 9.5% in subcortical vascular cognitive impair-
ment participants.23 Additionally, two studies based
on 1.5T and 3.0T MRI results also indicated a
higher level of EPVS grade (including CSO-PVS and
BG-PVS) in the AD population.24,25 In a longitudi-
nal study based on the ADNI database, individuals
with moderate and frequent/severe CSO-PVS had
a higher risk of diagnostic conversion (including
healthy-MCI, MCI-AD) compared to individuals
with no/light CSO-PVS.26 However, its efficacy as
a biomarker for the risk of MCI advancing to AD
remains to be fully ascertained. This research estab-

lishes a significant positive correlation between the
severity of centrum semiovale perivascular spaces
and the risk of MCI progressing to AD, suggesting
that greater CSO-PVS severity augments the likeli-
hood of progression.Within AD research, biomarkers
are crucial for early diagnosis and prognosis, as evi-
denced by numerous studies and predictive models.27

Among these, neuropsychological tests, biochemical
assays, and neuroimaging are extensively examined
for their diagnostic value.28 Biochemical markers,
however, are constrained by variability in testing
methods and the invasive nature of certain proce-
dures, such as CSF analysis. Neuropsychological
evaluations are most informative with overt clini-
cal symptoms due to their subjectivity. Among these
approaches, neuroimaging has become paramount,
with MRI providing a non-invasive insight into
brain structures, thereby playing a vital role in AD
research.29−31 Consequently, the CSO-PVS sever-
ity observed in MRI scans may emerge as a key
biomarker for transitioning from MCI to AD, sup-
porting diagnostic and therapeutic strategies.

In this study, we performed a preliminary uni-
variate logistic regression analysis on the degree
of perivascular space enlargement to explore its
potential as a predictive biomarker for the pro-
gression from MCI to AD across two patient
cohorts.The findings indicate that both moderate
(CSO-PVS = 2, OR = 5.54, 95% CI [3.04–10.18])
and severe (CSO-PVS = 3, OR = 25.04, 95% CI
[10.07–62.23]) expansions of the perivascular spaces
at the centrum semiovale are significant predictors of
progression to AD, as reported in Table 2. These asso-
ciations remained robust in the multivariate logistic
regression model, which controlled for additional
variables, demonstrating strong predictive capabili-
ties (CSO-PVS = 2, OR = 9.40, 95% CI [3.23–27.34];
CSO-PVS = 3, OR = 24.64, 95% CI [7.66–79.29]), as
shown in Table 3. It is important to note that some of
the reported odds ratios are associated with wide con-
fidence intervals (CI), reflecting the variability in the
estimates due to the relatively small sample size in
certain subcategories, particularly in severe enlarge-
ment groups. This limitation may have influenced the
precision of the estimates and the width of the con-
fidence intervals. Future studies with larger sample
sizes in each subgroup are warranted to validate and
strengthen the findings. Considering this limitation,
even so, the results focusing on odds ratios (ORs) still
demonstrate the significant predictive role of PVS
enlargement in the transition from MCI to AD. Con-
sequently, the enlargement of CSO-PVS may serve
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as a significant prognostic indicator in the develop-
ment of MCI into AD. However, the constraints of this
study necessitate further corroboration through more
extensive sampling and multicentric research. More-
over, while moderate (BG-PVS = 2, OR = 9.26, 95%
CI [3.97–21.6]) and severe (BG-PVS = 3, OR = 4.98,
95% CI [1.75–14.20]) enlargements of perivascular
spaces in the basal ganglia region exhibited predictive
potential in univariate analyses, their prognostic rel-
evance was not significant in the multivariate model
that incorporated a range of variables. The predic-
tive utility of basal ganglia PVS enlargement in
the advancement of MCI to AD warrants additional
exploration.

The univariate analysis of the variables examined
in this study indicated no statistically significant dif-
ferences (p > 0.05) between the groups in terms of
sex, history of hypertension, diabetes, and hyperlipi-
demia. This finding is consistent with prior research
on risk prediction models for the progression from
MCI to AD.7,8,32 In contrast, significant differences
(p < 0.05) were noted in the age of participants,
clinical cognitive function scores (ADAS-Cog13,
CDR-SB, MMSE), presence of the APOE �4 allele,
CSF A� levels, CSF t-tau, and p-tau levels, as well
as MRI-measured brain region volumes, including
the hippocampus, entorhinal cortex, fusiform gyrus,
middle temporal gyrus, and total brain volume. The
severity of perivascular spaces in the centrum semio-
vale also differed between the MCI-AD conversion
group and the non-conversion group. These outcomes
corroborate findings from earlier studies.33

All patients were divided into a training group
and a validation group to construct a predictive
model. LASSO regression analysis was used to select
appropriate clinical features, reduce collinearity, and
improve model accuracy. This method is considered
superior to univariate analysis in selecting predic-
tive factors.34,35 Subsequently, multivariate logistic
regression analysis was performed on the 12 selected
variables with non-zero coefficients. From this anal-
ysis, 6 clinical features with good predictive ability
(p < 0.05) were identified and used to construct a pre-
dictive model, visualized as a nomogram. These 6
clinical features include APOE4 genotype, ADAS11
scale, CSO-PVS grade, Entorhinal, Fusiform, and
MidTemp volume. The predictive model, composed
of these six clinical features, demonstrated excellent
predictive ability in the validation of the ROC curve,
with an AUC value of 0.912 (95% CI, 0.839–0.985).
In comparison with the baseline model that excluded
CSO-PVS grade and single factors in the model for

ROC curve accuracy, models incorporating CSO-
PVS demonstrated the highest accuracy. The baseline
model had an AUC value of 0.86 (95% CI, 0.77–0.96)
in the validation group. Further validation of the clin-
ical applicability of the models using DCA curves
showed that models including CSO-PVS exhibited
the best clinical utility.

ApoE is the primary cholesterol carrier in the
brain, contributing to neuronal growth, cell mem-
brane repair and remodeling, A� clearance and
degradation, and reduction of neuroinflammation.36

The three alleles of APOE—APOE2 (�2/�2,
�2/�3), APOE3 (�3/�3, �2/�4), and APOE4 (�3/�4,
�4/�4)—have been associated with varying AD risks.
Studies have revealed that compared to patients car-
rying APOE3 �3/�3, those carrying APOE3 �2/�4
have a 1.64 times higher risk of developing AD,
while those carrying APOE4 �3/�4 have a 2.63 times
higher risk, and those carrying APOE4 �4/�4 have
nearly a 14.00 times higher risk of developing AD.37

APOE4 is recognized as the most significant genetic
risk factor for late-onset AD, implicated in the patho-
genesis through the promotion of amyloid plaque
and neurofibrillary tangle formation. Conversely,
APOE2 is associated with neuroprotective effects,
potentially inhibiting or reversing these pathological
processes.38

The ADAS-Cog with 11 items has demonstrated
superior predictive validity for the progression from
MCI to AD when assessing clinical cognitive func-
tion. This indicates that baseline impairments across
multiple cognitive domains, as opposed to a singular
evaluation of memory function, can more precisely
forecast the risk of future dementia development.39

Individuals with MCI exhibiting both memory and
non-memory cognitive deficits are at increased risk
for AD compared to those with memory deficits
alone. Utilizing the ADAS-Cog to evaluate mul-
tiple cognitive domains enhances the accuracy of
determining the MCI stage and improves prognostic
accuracy.

Regarding MRI biomarkers, our model includes
the severity of the centrum semiovale perivascu-
lar space and the volumes of the Entorhinal cortex,
Fusiform gyrus, and Middle Temporal. Previous
studies have demonstrated the diagnostic value and
predictive performance of various potential MRI
biomarkers, including whole brain atrophy, Middle
Temporal, and Fusiform gyrus, in multiple machine
learning studies for predicting MCI-AD risk.40,41

However, this prediction model has several limita-
tions. First, its construction relies on the small sample
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size of the ADNI database. Therefore, future stud-
ies should collect clinical and imaging data from a
larger number of MCI patients. Second, this study
only employs internal validation, and further veri-
fication through multi-center external validation is
necessary to establish its clinical applicability. Lastly,
the ADNI database used in this study lacks diversity
in national ethnic origins, which hinders the determi-
nation of the model’s universality in Asia and other
regions.

Conclusion

We developed a nomogram in this study to
predict the risk of progression to Alzheimer’s dis-
ease in individuals with mild cognitive impairment
by incorporating six imaging and clinical features,
including perivascular space grades. This may facil-
itate clinicians in identifying high-risk patients with
mild cognitive impairment more easily and quickly,
enabling targeted treatment at an early stage to miti-
gate the impact of the disease.
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